TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.

نویسندگان

  • P R Bohjanen
  • Y Liu
  • M A Garcia-Blanco
چکیده

The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s). A cell-free transcription system involving immobilized DNA templates was used to further define the factor(s) that interact with TAR RNA. Preinitiation complexes formed in the presence or absence of Tat were purified on immobilized templates containing the HIV-1 promoter. After washing, nucleotides and radiolabelled UTP were added and transcription was measured. The presence of Tat during preinitiation complex formation resulted in an increase in the level of full-length HIV-1 transcripts. This Tat-activated increase in HIV-1 transcription was not inhibited by circular TAR decoys added during preinitiation complex formation but was inhibited by circular TAR decoys subsequently added during the transcription reaction. These results suggest that TAR decoys inhibit Tat-activated HIV-1 transcription after preinitiation complex formation, perhaps by interacting with components of transcription complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.

Linear TAR RNA has previously been used as a decoy to inhibit HIV-1 transcription in vitro and HIV-1 replication in vivo. A 48 nucleotide circular RNA containing the stem, bulge and loop of the HIV-1 TAR element was synthesized using the self-splicing activity of a group I permuted intron-exon and was tested for its ability to function as a TAR decoy in vitro. This small circular TAR molecule w...

متن کامل

HIV-1 TAR RNA enhances the interaction between Tat and cyclin T1.

Human immunodeficiency virus, type 1 (HIV-1), Tat activates elongation of RNA polymerase II transcription at the HIV-1 promoter through interaction with the cyclin T1 (CycT1) subunit of the positive transcription elongation factor complex, P-TEFb. Binding of Tat to CycT1 induces cooperative binding of the P-TEFb complex onto nascent HIV-1 TAR RNA. Here the specific interaction between Tat prote...

متن کامل

TAR-RNA recognition by a novel cyclic aminoglycoside analogue

The formation of the Tat-protein/TAR-RNA complex is a crucial step in the regulation of human immunodeficiency virus (HIV)-gene expression. To obtain full-length viral transcripts the Tat/TAR complex has to recruit the positive transcription elongation factor complex (P-EFTb), which interacts with TAR through its cyclin T1 (CycT1) component. Mutational studies identified the TAR hexanucleotide ...

متن کامل

A cofactor, TIP30, specifically enhances HIV-1 Tat-activated transcription.

Replication of HIV-1 requires the viral Tat protein, which increases the extent of transcription elongation by RNA polymerase II after activation at the single viral long terminal repeat (LTR) promoter. This effect of Tat on transcription requires Tat interactions with a 5' region (TAR) in nascent transcripts as well as Tat-specific cofactors. The present study identifies a cellular protein, TI...

متن کامل

[Frontiers in Bioscience 11, 89-112, January 1, 2006] 89 HIV-1 inactivation by nucleic acid aptamers

1. Abstract 2. Nucleic acid aptamers 3. Inhibition of HIV-1 enzymatic function 3.1. Reverse Transcriptase. 3.1.1. Anti-RT drugs, side effects and resistance 3.1.2. RNA aptamers in vitro 3.1.3. Anti-RT ssDNA aptamers in vitro 3.1.4. Anti-RT RNA aptamers in cells 3.2. Protease 3.2.1. Protease aptamers 3.3. Integrase 3.3.1. Integrase aptamers in vitro 4. Inhibition of HIV-1 gene expression: transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 22  شماره 

صفحات  -

تاریخ انتشار 1997